スポンサー広告

面と面の関係

立体図形では、面と面は、2つの関係になれる。交わるか、平行か、だ。

例えば、直方体ABCD-EFGHで、面と面の関係を、考えていこう。

\begin{xy} (-3,27)*{A}="A", (23,15)*{B}="A", (-23,15)*{D}="A", (-3,-3)*{C}="A", (-3,9)*{E}="A", (23,-9)*{F}="A", (-23,-9)*{H}="A", (-3,-21)*{G}="A", (0,0)*{\bullet}="A", (20,12)*{\bullet}="A", (-20,12)*{\bullet}="A", (20,-6)*{\bullet}="A", (-20,-6)*{\bullet}="A", (0,-18)*{\bullet}="A", (0,6)*{\bullet}="A", (0,24)*{\bullet}="A", {(0,0) \ar @{-}(20,12)}, {(0,0) \ar @{-}(0,-18)}, {(0,0) \ar @{-}(-20,12)}, {(0,24) \ar @{-}(20,12)}, {(0,24) \ar @{-}(-20,12)}, {(20,12) \ar @{-}(20,-6)}, {(-20,12) \ar @{-}(-20,-6)}, {(0,-18) \ar @{-}(20,-6)}, {(0,-18) \ar @{-}(-20,-6)}, {(0,6) \ar @{.}(20,-6)}, {(0,6) \ar @{.}(-20,-6)}, {(0,6) \ar @{.}(0,24)}, \end{xy}

面と面が交わる

面ABFEが交わるのは、4つの面だ。

面ABFEと、面ABCDと面EFGH

\begin{xy} (-3,27)*{A}="A", (23,15)*{B}="A", (-23,15)*{D}="A", (-3,-3)*{C}="A", (-3,9)*{E}="A", (23,-9)*{F}="A", (-23,-9)*{H}="A", (-3,-21)*{G}="A", (0,0)*{\bullet}="A", (20,12)*{\bullet}="A", (-20,12)*{\bullet}="A", (20,-6)*{\bullet}="A", (-20,-6)*{\bullet}="A", (0,-18)*{\bullet}="A", (0,6)*{\bullet}="A", (0,24)*{\bullet}="A", {(0,0) \ar @{-}(20,12)}, {(0,0) \ar @{-}(-20,12)}, {(0,24) \ar @{-}(20,12)}, {(0,24) \ar @{-}(-20,12)}, {(20,12) \ar @{-}(20,-6)}, {(0,-18) \ar @{-}(20,-6)}, {(0,-18) \ar @{-}(-20,-6)}, {(0,6) \ar @{.}(20,-6)}, {(0,6) \ar @{.}(-20,-6)}, {(0,6) \ar @{.}(0,24)}, \end{xy}

さらに、面ABFEと、面ADHEと面BCGF

\begin{xy} (-3,27)*{A}="A", (23,15)*{B}="A", (-23,15)*{D}="A", (-3,-3)*{C}="A", (-3,9)*{E}="A", (23,-9)*{F}="A", (-23,-9)*{H}="A", (-3,-21)*{G}="A", (0,0)*{\bullet}="A", (20,12)*{\bullet}="A", (-20,12)*{\bullet}="A", (20,-6)*{\bullet}="A", (-20,-6)*{\bullet}="A", (0,-18)*{\bullet}="A", (0,6)*{\bullet}="A", (0,24)*{\bullet}="A", {(0,0) \ar @{-}(20,12)}, {(0,0) \ar @{-}(0,-18)}, {(0,24) \ar @{-}(20,12)}, {(0,24) \ar @{-}(-20,12)}, {(20,12) \ar @{-}(20,-6)}, {(-20,12) \ar @{-}(-20,-6)}, {(0,-18) \ar @{-}(20,-6)}, {(0,6) \ar @{.}(20,-6)}, {(0,6) \ar @{.}(-20,-6)}, {(0,6) \ar @{.}(0,24)}, \end{xy}

面が交わるとは、直線を共有する、ともいえる。

なお、交わる面のうち、垂直に交わる面もある。



<例題 \( \Large 1 \) >直方体ABCD-EFGHで、面ABCDと交わる面を、すべて書きなさい。

\begin{xy} (-3,27)*{A}="A", (23,15)*{B}="A", (-23,15)*{D}="A", (-3,-3)*{C}="A", (-3,9)*{E}="A", (23,-9)*{F}="A", (-23,-9)*{H}="A", (-3,-21)*{G}="A", (0,0)*{\bullet}="A", (20,12)*{\bullet}="A", (-20,12)*{\bullet}="A", (20,-6)*{\bullet}="A", (-20,-6)*{\bullet}="A", (0,-18)*{\bullet}="A", (0,6)*{\bullet}="A", (0,24)*{\bullet}="A", {(0,0) \ar @{-}(20,12)}, {(0,0) \ar @{-}(0,-18)}, {(0,0) \ar @{-}(-20,12)}, {(0,24) \ar @{-}(20,12)}, {(0,24) \ar @{-}(-20,12)}, {(20,12) \ar @{-}(20,-6)}, {(-20,12) \ar @{-}(-20,-6)}, {(0,-18) \ar @{-}(20,-6)}, {(0,-18) \ar @{-}(-20,-6)}, {(0,6) \ar @{.}(20,-6)}, {(0,6) \ar @{.}(-20,-6)}, {(0,6) \ar @{.}(0,24)}, \end{xy}

<解答 \( \Large 1 \) >
    面ABFE    面ADHE    面BCGF    面CDHG

面と面が平行

面ABCDが平行なのは、面CFGHだ。

平行な面同士は、どこまで延長しても、交わらない。

\begin{xy} (-3,27)*{A}="A", (23,15)*{B}="A", (-23,15)*{D}="A", (-3,-3)*{C}="A", (-3,9)*{E}="A", (23,-9)*{F}="A", (-23,-9)*{H}="A", (-3,-21)*{G}="A", (0,0)*{\bullet}="A", (20,12)*{\bullet}="A", (-20,12)*{\bullet}="A", (20,-6)*{\bullet}="A", (-20,-6)*{\bullet}="A", (0,-18)*{\bullet}="A", (0,6)*{\bullet}="A", (0,24)*{\bullet}="A", {(0,0) \ar @{-}(20,12)}, {(0,0) \ar @{-}(-20,12)}, {(0,24) \ar @{-}(20,12)}, {(0,24) \ar @{-}(-20,12)}, {(0,-18) \ar @{-}(20,-6)}, {(0,-18) \ar @{-}(-20,-6)}, {(0,6) \ar @{.}(20,-6)}, {(0,6) \ar @{.}(-20,-6)}, \end{xy}

<例題 \( \Large 2 \) >直方体ABCD-EFGHで、面ABFEと平行な面を、すべて書きなさい。

\begin{xy} (-3,27)*{A}="A", (23,15)*{B}="A", (-23,15)*{D}="A", (-3,-3)*{C}="A", (-3,9)*{E}="A", (23,-9)*{F}="A", (-23,-9)*{H}="A", (-3,-21)*{G}="A", (0,0)*{\bullet}="A", (20,12)*{\bullet}="A", (-20,12)*{\bullet}="A", (20,-6)*{\bullet}="A", (-20,-6)*{\bullet}="A", (0,-18)*{\bullet}="A", (0,6)*{\bullet}="A", (0,24)*{\bullet}="A", {(0,0) \ar @{-}(20,12)}, {(0,0) \ar @{-}(0,-18)}, {(0,0) \ar @{-}(-20,12)}, {(0,24) \ar @{-}(20,12)}, {(0,24) \ar @{-}(-20,12)}, {(20,12) \ar @{-}(20,-6)}, {(-20,12) \ar @{-}(-20,-6)}, {(0,-18) \ar @{-}(20,-6)}, {(0,-18) \ar @{-}(-20,-6)}, {(0,6) \ar @{.}(20,-6)}, {(0,6) \ar @{.}(-20,-6)}, {(0,6) \ar @{.}(0,24)}, \end{xy}

<解答 \( \Large 2 \) >
    面CDHG

次へ

前へ