スポンサー広告

>E最頻値と範囲

指標

データの特徴を、手短かに伝えるために、指標(しひょう)が用いられる。

代表的な指標は、 平均値中央値最頻値範囲がある。

例えば、A村から5人、B村から5人、おこづかいのデータを調査したので、考えてみよう。

A村のおこづかい

100円、200円、300円、400円、500円



B村のおこづかい

100円、100円、100円、100円、1000円

最頻値

最頻値(さいひんち 英:mode)は、測定値のうち、もっとも度数の多い値だ。

例えば、B村は4人の測定値が\( 100 \) 円で、1人の測定値が\( 400 \) 円なので、もっとも度数の多い値は \( 100 \) 円となる。

したがって、B村の最頻値は \( 100 \) 円となる。



なお、A村は、すべての測定値の度数が同じなので、最頻値は、ない。

範囲

範囲(はんい 英:range)は、測定値の、最大と最小の差だ。

\( \,\, 範囲= 最大の測定値 - 最小の測定値 \)



例えば、A村の、最大の測定値は \( 500 \) 円で、最小の測定値は \( 100 \) 円となる。

したがって、A村の範囲は、 \( 500 - 100 = 400 \) 円となる。



同じように、B村の、最大の測定値は \( 1000 \) 円で、最小の測定値は \( 100 \) 円となる。

したがって、B村の範囲は、 \( 1000 - 100 = 900 \) 円となる。



<例題 \( \Large 1 \) >

以下のD村のおこづかいのデータから、最頻値と範囲を求めなさい。

D村のおこづかい

10円、200円、200円、200円、10000円


<解答 \( \Large 1 \) >
最頻値 \( 200 \) 円   範囲 \( 9990 \) 円

次へ

前へ