スポンサー広告

>G対応する辺と角

対応する辺

合同な図形は、対応する辺が、等しい。

<例題 \( \Large 1 \) >
\( \bigtriangleup ABC \) と\( \bigtriangleup DEF \) は、合同だ。辺\(DE\) 、 辺\(EF\) の長さを求めなさい。

\begin{xy} (22,0)*{A}="A", (0,-31)*{C}="A", (18,-24)*{B}="A", (8,-14)*{13}="A", (21.5,-14)*{8}="A", (10,-26.5)*{7}="A", {(0,-28) \ar @{-}(18,-21)}, {(0,-28) \ar @{-}(22,-3)}, {(22,-3) \ar @{-}(18,-21)}, (30,0)*{D}="A", (34,-24)*{F}="A", (52,-31)*{E}="A", {(30,-3) \ar @{-}(52,-28)}, {(30,-3) \ar @{-}(34,-21)}, {(52,-28) \ar @{-}(34,-21)}, \end{xy}


<解答 \( \Large 1 \) >
辺\(DE = 13 \)
辺\(EF = 7 \)

対応する角

合同な図形は、対応する角が、等しい。

<例題 \( \Large 2 \) >
4角形\( ABCD \) と 4角形\( EFGH \) は、合同だ。\( \angle EFG \) と \( \angle EHG \) の角度を求めなさい。

\begin{xy} (5,0)*{A}="A", (25,-27)*{C}="A", (20,-5)*{B}="A", (2,-27)*{D}="A", (8,-9)*{\small 77^\circ}="A", (17,-13)*{\small 124^\circ}="A", (6,-20)*{\small 80^\circ}="A", {(5,-3) \ar @{-}(0,-24)}, {(20,-8) \ar @{-}(5,-3)}, {(20,-8) \ar @{-}(28,-24)}, {(0,-24) \ar @{-}(28,-24)}, (4,-6)*{}="E"; (8,-3.5)*{}="F"; "E"; "F" **\crv{(7,-6)}, (22,-10)*{}="E"; (18,-7)*{}="F"; "E"; "F" **\crv{(18,-11)}, (3,-24.5)*{}="E"; (0,-21)*{}="F"; "E"; "F" **\crv{(3,-21)}, (35,0)*{E}="A", (55,-27)*{G}="A", (50,-5)*{F}="A", (32,-27)*{H}="A", {(35,-3) \ar @{-}(30,-24)}, {(50,-8) \ar @{-}(35,-3)}, {(50,-8) \ar @{-}(58,-24)}, {(30,-24) \ar @{-}(58,-24)}, \end{xy}


<解答 \( \Large 2 \) >
\( \angle EFG = 124^\circ \)
\( \angle EHG = 79^\circ \)

次へ

前へ